AIEEE 2011 Chemistry Syllabus

Books For Preparation
Section A
Physical Chemistry

UNIT-1: SOME BASIC CONCEPTS IN CHEMISTRY

Matter and its nature, Dalton's atomic theory; Concept of atom, 
molecule, element and compound; Physical quantities and their 
measurements in Chemistry, precision and accuracy, 
significant figures, S.I. Units, dimensional analysis; 
Laws of chemical combination; Atomic and molecular 
masses, mole concept, molar mass, percentage composition, 
empirical and molecular formulae; Chemical equations and stoichiometry.

UNIT-2: STATES OF MATTER
Classification of matter into solid, liquid and gaseous states.


Gaseous State:
Measurable properties of gases; Gas laws - Boyle's law, Charle's law,
Graham's law of diffusion, Avogadro's law, Dalton's law of partial pressure;
Concept of Absolute scale of temperature; Ideal gas equation,
Kinetic theory of gases (only postulates); Concept of average,
root mean square and most probable velocities; Real gases,
deviation from Ideal behaviour, compressibility factor,
van der Waals equation, liquefaction of gases, critical constants.


Liquid State:
Properties of liquids - vapour pressure, viscosity and s
urface tension and effect of temperature on them (qualitative treatment only).


Solid State: Classification of solids: molecular, ionic, covalent and
metallic solids, amorphous and crystalline solids (elementary idea);
Bragg's Law and its applications, Unit cell and lattices, packing in solids
(fcc, bcc and hcp lattices), voids, calculations involving unit
cell parameters, imperfection in solids; electrical, magnetic and dielectric properties.

UNIT-3: ATOMIC STRUCTURE
Discovery of sub-atomic particles (electron, proton and neutron);
Thomson and Rutherford atomic models and their limitations;
 Nature of electromagnetic radiation, photoelectric effect; spectrum o
f hydrogen atom, Bohr model of hydrogen atom - its postulates,
derivation of the relations for energy of the electron and radii of the
different orbits, limitations of Bohr's model; dual nature of matter,
de-¬Broglie's relationship, Heisenberg uncertainty principle.
Elementary ideas of quantum mechanics, quantum mechanical model
of atom, its important features, ? and ?2, concept of atomic orbitals
as one electron wave functions; Variation of ? and ?2 with r for
1s and 2s orbitals; various quantum numbers (principal, angular
momentum and magnetic quantum numbers) and their significance;
shapes of s, p and d - orbitals, electron spin and spin quantum
number; rules for filling electrons in orbitals – aufbau principle,
Pauli's exclusion principle and Hund's rule, electronic configuration
 of elements, extra stability of half-filled and completely filled orbitals.

UNIT-4: CHEMICAL BONDING AND MOLECULAR STRUCURE
Kossel - Lewis approach to chemical bond formation, concept of
ionic and covalent bonds.

Ionic Bonding: Formation of ionic bonds, factors affecting
the formation of ionic bonds; calculation of lattice enthalpy.

Covalent Bonding: Concept of electronegativity, Fajan's rule,
dipole moment; Valence Shell Electron Pair Repulsion (VSEPR)
theory and shapes of simple molecules.

Quantum mechanical approach to covalent bonding: Valence bond theory -
Its important features, concept of hybridization involving s, p and d orbitals;
Resonance.

Molecular Orbital Theory: Its important features, LCAOs, types of molecular
orbitals (bonding, antibonding), sigma and pi-bonds, mo1ecular
orbital electronic configurations of homonuclear diatomic molecules, concept
of bond order, bond length and bond energy. Elementary idea of metallic bonding.
Hydrogen bonding and its applications.

UNIT-5: CHEMICAL THERMODYNAMICS
Fundamentals of thermodynamics: System and surroundings, .
extensive and intensive properties, state functions, types of processes.

First law of thermodynamics: Concept of work, heat internal energy
and enthalpy, heat capacity, molar heat capacity, Hess's law of constant
heat summation; Enthalpies of bond dissociation, combustion, formation, a
tomization, sublimation, phase transition, hydration, ioniz-ation and solution.

Second law of thermodynamics: Spontaneity of processes;
?S of the universe and ?G of the system as criteria for spontaneity, ?
Go (Standard Gibbs energy change) and equilibrium constant.

UNIT-6: SOLUTIONS
Different methods for expressing concentration of solution - molality,
molarity, mole fraction, percentage (by volume and mass both), vapour
pressure of solutions
and Raoult's Law - Ideal and non-ideal solutions, vapour pressure -
composition plots for ideal and non-ideal solutions; Colligative properties of
dilute solutions -
relative lowering of vapour pressure, depression of freezing point, elevation
of boiling
point and osmotic pressure; Determination of molecular mass using colligative
properties; Abnormal value of molar mass, van't Hoff factor and its significance.

UNIT-7: EQUILIBRIUM
Meaning of equilibrium, concept of dynamic equilibrium.

Equilibria involving physical processes: Solid -liquid, liquid - gas and solid -
gas equilibria, Henry's law, general characterics of equilibrium involving physical processes.

Equilibria involving chemical processes: Law of chemical equilibrium,
 equilibrium constants (Kp and Kc) and their significance, significance
of ?G and ?Go in chemical equilibria, factors affecting equilibrium concentration, pressure, temperature, effect of catalyst; Le¬ Chatelier’s principle.

Ionic equilibrium: Weak and strong electrolytes, ionization of electrolytes,
various concepts of acids and bases (Arrhenius, Bronsted - Lowry and
Lewis) and their ionization, acid - base equilibria (including multistage
ionization) and ionization constants, ionization of water, pH scale,
common ion effect, hydrolysis of salts and pH of their solutions,
solubility of sparingly soluble salts and solubility products, buffer solutions.

UNIT-8: REDOX REACTIONS AND ELECTROCHEMISTRY
Electronic concepts of oxidation and reduction, redox reactions,
oxidation number, rules for assigning oxidation number, balancing of
redox reactions.

Eectrolytic and metallic conduction, conductance in electrolytic solutions,
specific and molar conductivities and their variation with concentration:
Kohlrausch's law and its applications.

Electrochemical cells - Electrolytic and Galvanic cells, different types of electrodes,
 electrode potentials including standard electrode potential, half - cell and cell
reactions, emf of a Galvanic cell and its measurement; Nemst equation and its
applications; Relationship between cell potential and Gibbs' energy change; Dry cell
and lead accumulator; Fuel cells; Corrosion and its prevention.

UNIT-9: CHEMICAL KINETICS
Rate of a chemical reaction, factors affecting the rate of reactions
-concentration, temperature, pressure and catalyst; elementary and complex
 reactions, order and molecularity of reactions, rate law, rate constant
and its units, differential and integral forms of zero and first order
reactions, their characteristics and half - lives, effect of temperature on
rate of reactions - Arrhenius theory, activation energy and its calculation,
collision theory of bimolecular gaseous reactions (no derivation).

UNIT-10: SURFACE CHEMISTRY
Adsorption - Physisorption and chemisorption and their characteristics,
factors affecting adsorption of gases on solids - -Freundlich and
Langmuir adsorption isotherms, adsorption from s

SECTION - B

Inorganic Chemistry
UNIT-11: CLASSIFICATON OF ELEMENTS AND PERIODICITY IN PROPERTIES
Modem periodic law and present form of the periodic table, s, p, d and f block
 elements, periodic trends in properties of elements¬atomic and ionic 
radii, ionization enthalpy, electron gain enthalpy, valence, oxidation states 
and chemical reactivity.

UNIT -12: GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF METALS
Modes of occurrence of elements in nature, minerals, ores; steps involved in
 the extraction 
of metals - concentration, reduction (chemical. and electrolytic methods) and refining with special reference to the extraction of Al, Cu, Zn and Fe; Thermodynamic and 
electrochemical principles involved in the extraction of metals.
UNIT - 13: HYDROGEN
Position of hydrogen in periodic table, isotopes, preparation, properties and uses
of hydrogen; physical and chemical properties of water and heavy water;
Structure, preparation, reactions and uses of hydrogen peroxide; Classification
of hydrides - ionic, covalent and interstitial; Hydrogen as a fuel.

UNIT - 14: s - BLOCK ELEMENTS (ALKALI AND ALKALINE EARTH METALS)
Group - 1 and 2 Elements

General introduction, electronic configuration and general trends in physical
and chemical properties of elements, anomalous properties of the first element
of each group, diagonal relationships.

Preparation and properties of some important compounds - sodium carbonate,
sodium chloride, sodium hydroxide and sodium hydrogen carbonate; Industrial
uses of lime, limestone, Plaster of Paris and cement; Biological significance of Na, K, Mg
and Ca.

UNIT - 15: p - BLOCK ELEMENTS

Group - 13 to Group 18 Elements


General Introduction: Electronic configuration and general trends in physical and
chemical properties of elements across the periods and down the groups; unique behaviour
of
 the first element in each group.

Groupwise study of the p – block elements

Group - 13

Preparation, properties and uses of boron and aluminium; structure, properties and uses
of borax, boric acid, diborane, boron trifluoride, aluminium chloride and alums.

Group - 14

Tendency for catenation; Structure, properties and uses of allotropes and oxides of
carbon, silicon tetrachloride, silicates, zeolites and silicones.

Group - 15

Properties and uses of nitrogen and phosphorus; Allotrophic forms of phosphorus
; Preparation, properties, structure and uses of ammonia nitric acid, phosphine
and phosphorus halides, (PCl3, PCl5); Structures of oxides and oxoacids of nitrogen
and phosphorus.

Group - 16

Preparation, properties, structures and uses of dioxygen and ozone; Allotropic forms
of sulphur; Preparation, properties, structures and uses of sulphur dioxide, sulphuric
acid (including its industrial preparation); Structures of oxoacids of sulphur.

Group - 17

Preparation, properties and uses of chlorine and hydrochloric acid; Trends in the acidic
nature of hydrogen halides; Structures of Interhalogen compounds and oxides and oxoacids
of halogens.

Group - 18

Occurrence and uses of noble gases; Structures of fluorides and oxides of xenon.

UNIT – 16: d – and f – BLOCK ELEMENTS
Transition Elements

General introduction, electronic configuration, occurrence and characteristics, general
 trends in properties of the first row transition elements - physical properties,
 ionization enthalpy, oxidation states, atomic radii, colour, catalytic behaviour,
magnetic properties, complex formation, interstitial compounds, alloy formation;
Preparation, properties and uses of K2 Cr2 O7 and KMnO4.

Inner Transition Elements

Lanthanoids - Electronic configuration, oxidation states, chemical reactivity and lanthanoid contraction.

Actinoids - Electronic configuration and oxidation states.
UNIT - 17: CO-ORDINATION COMPOUNDS
Introduction to co-ordination compounds, Werner's theory; ligands, co-ordination
number, denticity, chelation; IUPAC nomenclature of mononuclear co-ordination
compounds, isomerism; Bonding ¬Valence bond approach and basic ideas of Crystal
field theory, colour and magnetic properties; importance of co-ordination compounds
 (in qualitative a
nalysis, extraction of metals and in biological systems).
UNIT - 18: ENVIRONMENTAL CHEMISTRY
Environmental pollution - Atmospheric, water and soil. Atmospheric pollution - Tropospheric and stratospheric.

Tropospheric pollutants - Gaseous pollutants: Oxides of carbon, nitrogen and
sulphur, hydrocarbons; their sources, harmful effects and prevention; Green house effect and
 Global warming; Acid rain;

Particulate pollutants: Smoke, dust, smog, fumes, mist; their sources, harmful effects
and prevention.

Stratospheric pollution- Formation and breakdown of ozone, depletion of ozone layer - its mechanism and effects.

Water Pollution - Major pollutants such as, pathogens, organic wastes and chemical pollutants; their harmful effects and prevention.

Soil pollution - Major pollutants such as: Pesticides (insecticides,. herbicides and fungicides), their harmful effects and prevention. Strategies to control environmental pollution.


SECTION-C

Organic Chemistry
UNIT - 19: PURIFICATION AND CHARACTERISATION OF ORGANIC COMPOUNDS
Purification - Crystallization, sublimation, distillation, differential extraction 
and chromatography - principles and their applications.


Qualitative analysis - Detection of nitrogen, sulphur, phosphorus and halogens.


Quantitative analysis (basic principles only) - Estimation of carbon, hydrogen, 
nitrogen, halogens, sulphur, phosphorus.


Calculations of empirical formulae and molecular formulae; Numerical problems in 
organic quantitative analysis.
UNIT - 20: SOME BASIC PRINCIPLES OF ORGANIC CHEMISTRY
Tetravalency of carbon; Shapes of simple molecules - hybridization (s and p); 
Classification of organic compounds based on functional groups: - C = C - , - 
C = C - and those containing halogens, oxygen, nitrogen and sulphur, Homologous 
series; Isomerism - structural and stereoisomerism.


Nomenclature (Trivial and IUPAC)


Covalent bond fission - Homolytic and heterolytic: free radicals, carbocations 
and carbanions; stability of carbocations and free radicals, electrophiles and nucleophiles.


Electronic displacement in a covalent bond - Inductive effect, electromeric 
effect, resonance and hyperconjugation.


Common types of organic reactions - Substitution, addition, elimination
 and rearrangement.
UNIT - 21: HYDROCARBONS
Classification, isomerism, IUPAC nomenclature, general methods of preparation,
properties and reactions.

Alkanes - Conformations: Sawhorse and Newman projections (of ethane);
Mechanism of halogenation of alkanes.

Alkenes - Geometrical isomerism; Mechanism of electrophilic addition: addition of
hydrogen, halogens, water, hydrogen halides (Markownikoff's and peroxide
effect); Ozonolysis, oxidation, and polymerization.

Alkynes - acidic character; addition of hydrogen, halogens, water and hydrogen
halides; polymerization.

Aromatic hydrocarbons - Nomenclature, benzene - structure and aromaticity;
Mechanism of electrophilic substitution: halogenation, nitration, Friedel – Craft’s alkylation
and acylation, directive influence of functional group in mono-substituted benzene.

UNIT - 22: ORGANIC COMPOUNDS CONTAINING HALOGENS
General methods of preparation, properties, reactions and uses. ALCOHOLS, PHENOLS
AND ETHERS

Alcohols: Identification of primary, secondary and tertiary alcohols; mechanism
of dehydration.

Phenols: Acidic nature, electrophilic substitution reactions: halogenation, nitration
and sulphonation, Reimer - Tiemann reaction.

Ethers: Structure.

ALDEHYDE AND KETONES: Nature of carbonyl group;Nucleophilic addition to >C=O
 group, relative reactivities of aldehydes and ketones; Important reactions such
as - Nucleophilic addition reactions (addition of HCN, NH3 and its derivatives),
Grignard reagent; oxidation; reduction (Wolff Kishner and Clemmensen); acidity
of a - hydrogen, aldol condensation, Cannizzaro reaction, Haloform reaction; Chemical
 tests to distinguish between aldehydes and Ketones.

CARBOXYLIC ACIDS : Acidic strength and factors affecting it.
UNIT - 24: ORGANIC COMPOUNDS CONTAINING NITROGEN
General methods of preparation, properties, reactions and uses.

Amines: Nomenclature, classification, structure basic character and identification of
primary, secondary and tertiary amines and their basic character.

Diazonium Salts: Importance in synthetic organic chemistry.

UNIT - 25: POLYMERS
General introduction and classification of polymers, general methods of
polymerization - addition and condensation, copolymerization; Natural and synthetic
 rubber and vulcanization; some important polymers with emphasis on their monomers
and uses - polythene, nylon, polyester and bakelite.
UNIT - 26: BIOMOLECULES
General introduction and importance of biomolecules.

CARBOHYDRATES - Classification: aldoses and ketoses; monosaccharides
(glucose and fructose), constituent monosaccharides of oligosacchorides (sucrose,
lactose, maltose) and polysaccharides (starch, cellulose, glycogen).

PROTEINS - Elementary Idea of a - amino acids, peptide bond, . polypeptides;
 proteins: primary, secondary, tertiary and quaternary structure (qualitative
idea only), denaturation of proteins, enzymes.

VITAMINS - Classification and functions.

NUCLEIC ACIDS - Chemical constitution of DNA and RNA.

Biological functions of Nucleic acids.

UNIT - 27: CHEMISTRY IN EVERYDAY LIFE
Chemicals in medicines - Analgesics, tranquilizers, antiseptics, disinfectants,
antimicrobials, antifertility drugs, antibiotics, antacids, antihistamins - their
meaning and common examples.

Chemicals in food - Preservatives, artificial sweetening agents - common examples.

Cleansing agents - Soaps and detergents, cleansing action.
UNIT - 28: PRINCIPLES RELATED TO PRACTICAL CHEMISTRY
Detection of extra elements (N,S, halogens) in organic compounds; Detection of the
 following functional groups: hydroxyl (alcoholic and phenolic), carbonyl (aldehyde
and ketone), carboxyl and amino groups in organic compounds.

Chemistry involved in the preparation of the following:

  Inorganic compounds: Mohr's salt, potash alum.

  Organic compounds: Acetanilide, p-nitroacetanilide, aniline yellow, iodoform.

Chemistry involved in the titrimetric excercises - Acids bases and the use of indicators,
oxalic-acid vs KMnO4, Mohr's salt vs KMnO4.

Chemical principles involved in the qualitative salt analysis:

Cations - Pb2+ , Cu2+, AI3+, Fe3+, Zn2+, Ni2+, Ca2+, Ba2+ , Mg2+ , NH4+.

Anions – CO32-, S2-, SO42-, NO2- , NO3- , CI - , Br-, I- .

(Insoluble salts excluded).

Chemical principles involved in the following experiments:

1. Enthalpy of solution of CuSO4

2. Enthalpy of neutralization of strong acid and strong base..

3. Preparation of lyophilic and lyophobic sols.

4. Kinetic study of reaction of iodide ion with hydrogen peroxide at room temperature.


RELATED LINKS:




No comments:

Post a Comment

Followers